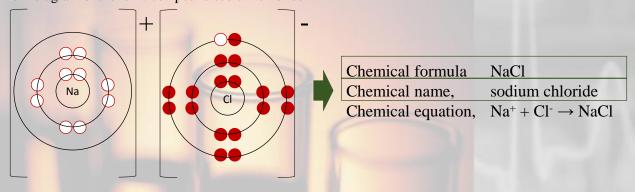
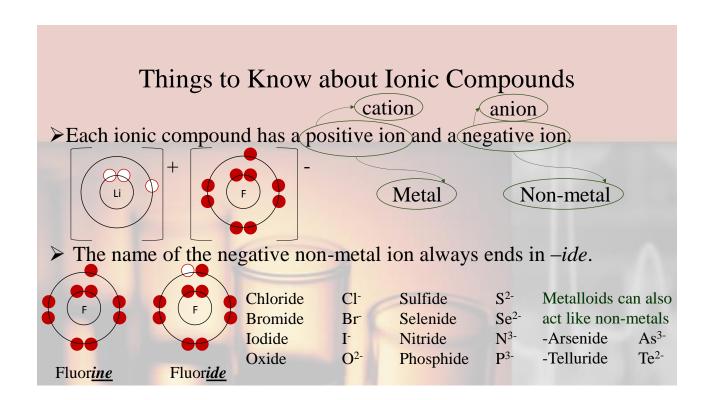
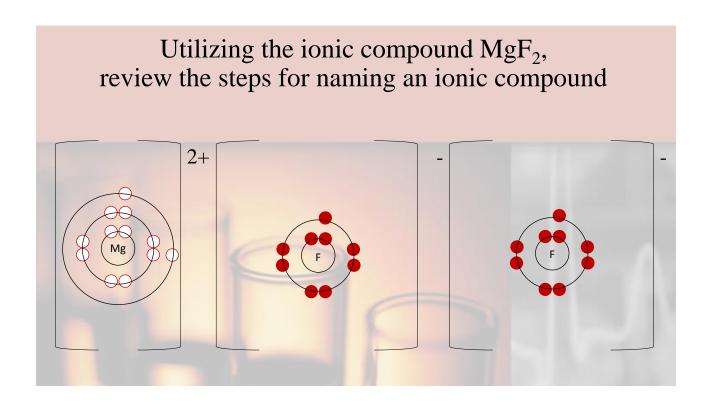
Chemical Names and Formulas of Compounds


PowerPoint 4.2


Reminder of the Information in PowerPoint 4.1


Ionic compounds and molecules can be represented in drawings utilizing Bohr models or Lewis diagrams. These compounds can also be represented in the following ways,

- ➤ Chemical formulae
- ➤ Chemical names
- ➤ Chemical equations

Bohr diagram of the ionic compound sodium chloride

How to Determine the Chemical Name of an Ionic Compound

MgF₂

Magnesium 1. Name the metal ion, the cation.

> Magnesium donates two electrons, one to each florine, leaving it with a charge of 2+.

- 2. Name the non-metal, the anion, Fluoride adding the suffix -ide.
- 3. Write the name of the compounds, with the cation first.

Each fluorine atom receives an electron from magnesium thereby forming the fluoride anion.

Magnesium fluoride

Try naming the compound Li₃N

1. Name the cation.

Lithium

2. Name the anion adding the –ide suffix.

Nitride

3. Write the name of the cation followed by the name of the anion.

Lithium nitride

How to Determine the Chemical Formula for an Ionic Compound

- 1. Identify each ion and their respective charges.
- 2. Determine the number of each ion needed to balance the positive and negative charges.
- 3. Note the ratio of positive and negative ions
- 4. Write the formula with the ratio in subscript numbers
- A "1" is not written in the formula.
- ➤ Usually, the ratio is simplified if possible.

Magnesium and fluoride

Mg²⁺ and F

$$Mg^{2+}$$
 +2 = +2 1 Mg^{2+}
F- -1-1 = -2 2 F-

There are 2 F⁻ for each 1 Mg²⁺.

 MgF_2

Chemical equation, $Mg^{2+} + 2F^{-} \rightarrow MgF_{2}$

Try writing the chemical formula for the ionic compound formed between lithium and nitrogen

Lithium and nitrogen

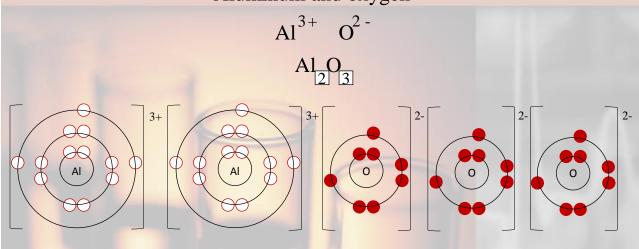
- 1. Identify each ion and their respective charges.
- 2. Determine the number of each ion needed to balance the positive and negative charges.
- 3. Note the ratio of positive and negative ions
- 4. Write the formula with the ratio in subscript numbers
- A "1" is not written in the formula.
- ➤ Usually, the ratio is simplified if possible.

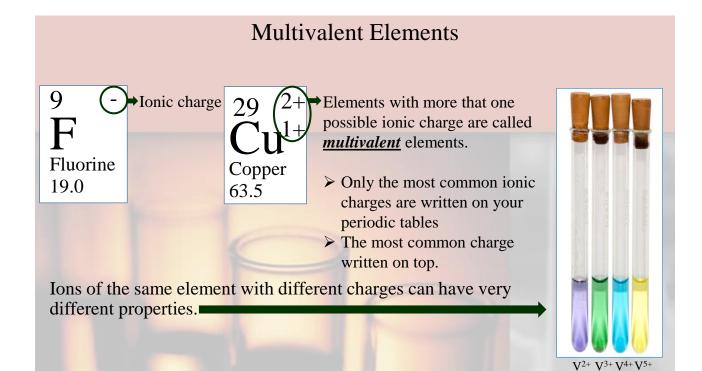
Li⁺ and N³⁻

Li⁺ +1 +1 +1 = +3 3 Li⁺

$$N^{3}$$
 -3 = -3 1 N^{3}

There are 3 Li⁺ for each 1 N³-.


Li₃N


Chemical equation, $3Li^+ + N^{3-} \rightarrow Li_3N$

A Shortcut, the Cross-Over Rule

The Cross-Over Rule is a trick utilized to arrive at the chemical formula of an ionic compound after identifying the ions present.

Aluminum and oxygen

How to Determine the

Chemical Formula for Ionic Compounds with **Multivalent Metals**

Chromium (III) nitride

1 Cr3+

- 1. Identify each ion and their respective charges.
- 2. Determine the number of each ion needed to balance the positive and negative charges.
- 3. Note the ratio of positive and negative ions
- 4. Write the formula with the ratio in subscript numbers
- A "1" is not written in the formula.
- The ratio is typically simplified if possible.

Cross-Over rule

 $\operatorname{Cr}^{3+}\operatorname{N}^{3-} \longrightarrow \operatorname{Cr}\operatorname{N}$

Cr3+ and N3-

+3 = +3Cr³⁺

 N^{3} -3 = -3 1 N^{3}

There is 1 Cr³⁺ for each 1 N³⁻.

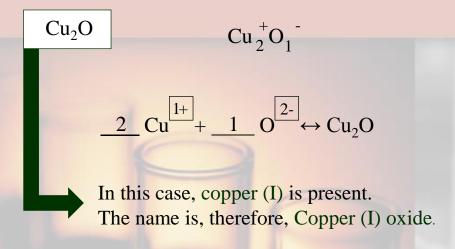
"Chromium three nitride

Chemical equation, $Cr^{3+} + N^{3-} \rightarrow CrN$

How to Determine Chemical Name for Ionic Compounds with Multivalent Metals

Cu₃P

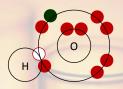
- 1. Identify the metal and its possible ions.
- 2. Note the charge on the anion from the Periodic Table and determine the charge on the metal taking into account the number of each ion.
- The positive and negative charges must balance.
- Determine the positive charge needed to balance
- 4. Write the name of the compound with the cation first.


Cu⁺ ou Cu²⁺ Cu, copper

P³-1(-3) = -3Cux 3(x) = +3x = +1

The copper ion in this compound is copper (I).

Copper (I) phosphide


Utilizing the Cross-Over Rule in Reverse in order to Determine the Charge on the Multivalent Metal

Polyatomic Ions

Polyatomic ions are covalent compouds, molecules, that carry a charge.

Hydroxyde, OH-, is a polyatomic ion.

There are 9p and 10e in this compound, therefore the overall charge is -1. Basically, for writing formulas and names,

TREAT POLYATOMIC IONS LIKE ANY OTHER ION.

Common Polyatomic Ions

Positive Ions NH ₄ ⁺ ammonium	Negative Ions		
	CH₃COO− acetate	HCO ₃ – hydrogen carbonate, bicarbonate	NO ₂ – nitrite
	CO ₃ ²⁻ carbonate	HSO ₄ - hydrogen sulfate, bisulfate	CIO ₄ - perchlorate
	ClO ₃ - chlorate	HS ⁻ hydrogen sulfide, bisulfide	MnO ₄ – permanganate
	CIO ₂ - chlorite	HSO ₃ - hydrogen sulfite, bisulfite	PO ₄ ³⁻ phosphate
2:	CrO ₄ 2- chromate	OH ⁻ hydroxide	PO ₃ ³⁻ phosphite
	CN- cyanide	CIO- hypochlorite	SO ₄ 2- sulfate
	Cr ₂ O ₇ ²⁻ dichromate	NO ₂ – nitrate	SO ₃ ²⁻ sulfite

How to Determine the <u>Chemical Name for Ionic Compounds</u> <u>with Polyatomic Ions</u>

 $Al_2(SO_4)_3$

- 1. Identify each ion and their respective charges.
- > Tip If you don't find the element on the Periodic Table check the list of polyatomic ions.
- 2. Write the name of the compound with the cation first.

 Al^{3+} and SO_4^{2-}

Aluminum sulfate

How to Determine the <u>Chemical Formula for Ionic Compounds</u> <u>with Polyatomic Ions</u>

Ammonium phosphate

1. Identify each ion and their respective charges.

Tip - If you don't find the element on the Periodic Table check the list of polyatomic ions.

2. Determine the ratio of ions needed to balance the positive and negative charges.

The positive and negative charges must balance.

3. Write the name of the compound with the cation first.

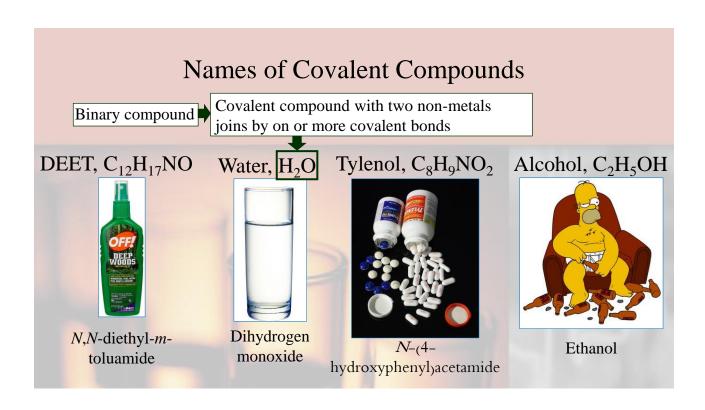
Place brackets around polyatomic ions if more than one is needed. NH₄⁺ and PO₄³⁻

$$PO_4^{3-}$$
 1(-3) = -3
 NH_4^+ x(1) = +3

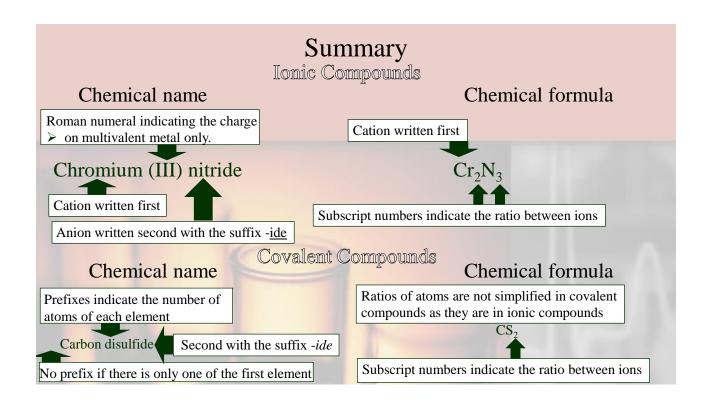
There are 3 NH₄⁺ for each 1 PO₄³⁻.

(NH₄)₃PO₄

In Order to Determine Chemical Formulas and Chemical Names with Polyatomic Ions, Follow the Same Steps. Remember, *TREAT THESE LIKE ANY OTHER ION*.


$$Al_{2}(Cr_{2}O_{7})_{3}$$

$$Al_{2}^{+}(Cr_{2}O_{7})_{3}^{-}$$


$$\underline{2} Al_{3}^{3+} + \underline{3} Cr_{2}O_{7}^{2-} \leftrightarrow Al_{2}(Cr_{2}O_{7})_{3}$$

Notice that the polyatomic ion's, Cr_2O_7 , formula is the same before and after the reaction.

The chemical name for $Al_2(Cr_2O_7)_3$ is Aluminum dichromate

Naming Binary Covalent Compounds N_2O_3 1. Name the first (leftmost) element in the Nitrogen formula 2. Name the second element in the formula Oxygen \rightarrow oxide adding the suffix -ide. 3. Add prefixes to each element's name 2 nitrogen → <u>di</u>nitrogen indicating the number of atoms or each 3 oxides \rightarrow *tri*oxide element in the compound 4. Write the name in the same order as the dinitrogen trioxide elements are written in the compound's formula

