Chemical Names and Formulas of Compounds

PowerPoint 4.2

Reminder of Information in PowerPoint 4.1 and in PowerPoint 4.2

You should feel comfortable writing chemical names, determining chemical formulas, and utilizing both Bohr diagrams and Lewis diagrams.

Lewis diagram

Chemical name Sodium chloride

Chemical formula
 NaCl

$$
\begin{aligned}
& \text { Chemicall equation } \\
& \mathrm{Na}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{NaCl}
\end{aligned}
$$

Chemical Equations

Chemical equations represent chemical reactions
One or more chemical changes occurring simultaneously

Law of Conservation of Mass

$>$ The total mass of the products is always equal to the total mass of the reactants in a chemical reaction

Atoms are neither created nor destroyed during a chemical reaction.

[^0]Figure 4.35 Mass is conserved in a chemical reaction.

Various Forms of Chemical Equations

A word equation shows only the names for the reactants and products,

Methane + oxygen \rightarrow water + carbon dioxide

A skeleton equation shows only the formulas for the reactants and products,

$$
\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

A balanced equation shows the identities of each pure substance involved as well as the matching number of each element on both sides of the chemical equation.

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

How to transform
 a Word equation into a skeleton equation

Word Methane + oxygen \rightarrow water + carbon dioxide

Names of these compounds must be memorized,
$\mathrm{H}_{2} \mathrm{O}$ Water
CH_{4} Methane NH_{3} Ammonia
aleletion $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

Try transforming the following Word equation into a skeleton equation

Word Hydrogen + nitrogen \rightarrow ammonia

NH_{3}

Naturally diatomic molecule $\left(\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~S}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}\right)$
skeletion $\quad \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow \mathrm{NH}_{3}$

How to Transform a Skeleton Equation to a Balanced Equation

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Hints,
$>$ Count the total number of atoms on each side of the arrow
$>$ Recount as coefficients are added
$1 \times \mathrm{C} 11$
$>$ Balance compounds first
$>$ Balance single elements last
$>$ Balance O and H last if on both sides
$>$ Polyatomic ions can often be counted as one unit
44 H \& 4 instead of counting each element separately.
$>$ Utilize fractions to balance diatomic elements.

Try to Transform the Following Skeleton Equation into a Balanced Equation

$$
\begin{gathered}
{\left[2 \mathrm{C}_{2} \mathrm{H}_{6}+3 \frac{1}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}\right] \times 2} \\
2 \& \mathrm{CY} \mathrm{\&} \\
66 \mathrm{H} \& 6 \\
7 \& \mathrm{O} \$ 57
\end{gathered}
$$

Summary

Reactants

Products

Word equation Methane + oxygen \rightarrow water + carbon dioxide

Skeleton equation $\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}$
Balanced equation \Rightarrow Following the Law of conservation of mass

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

[^0]: Mass $A[$ wood + air $]=$ Mass $B\left[\right.$ carbon $\left.+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}\right]$

