

Classification of Elements

How many different ways are individual *elements categorized*?

- Metals, non-metals, and metalloids.
- >Transition metals grouped together.
- >Lanthanoids and Actinoids, usually separated from the rest of the table.
- ≻By Group, alkali metals, halogens, noble gases, and so on.
- By Period, indicating the number of shells of an element's neutral atom.

Diatomic elements, H₂, N₂, O₂, S₂, F₂, Cl₂, Br₂, I₂

Classification of Compounds

How many different ways are individual *<u>compounds categorized</u>*?

> Ionic compounds versus Covalent compounds

General Differences between Acids and Bases		
Acids		Bases

	Acids		Dases
•	Sour taste		• Bitter taste
•	Corrosive, corrode	Both acids and bases Corrosive Conduct electricity 	Slippery feel
	metals		Caustic
•	Formula generally		• less reactive with
be	begin with H or		metals
	CH		• Formula generally
•	Produces H ⁺		ends with OH
•	pH < 7		 Produces OH⁻
	r		• pH > 7

Acid-Base Indicators

- Acid-Base indicators are chemical that change colour depending on the pH of a solution.
- They are often utilized to determine the pH of a solution or to determine the concentration of H⁺ or OH⁻.

Names of Acids

Many ionic compounds create acidic solutions when dissolved in water These compounds have different names when dissolved in water.

<u>Formula</u>	Chemical name	Formula in Solution	Name in Solution
HF	hydrogen fluoride	HF _(aq)	hydrofluoric acid
HC1	hydrogen chloride	HCl _(aq)	hydrochloric acid
HBr	hydrogen bromide	HBr _(aq)	hydrobromic acid
HI	hydrogen iodide	HI _(aq)	hydriodic acid
H_2SO_4	hydrogen sulfate	$H_2 SO_{4(aq)}$	sulfuric acid
H ₂ SO ₃	hydrogen sulfite	$H_2SO_{3(aq)}$	sulfurous acid
HClO ₄	hydrogen perchlorate	HClO _{4(aq)}	perchloric acid
HClO ₃	hydrogen chlorate	HClO _{3(aq)}	chloric acid
HClO ₂	hydrogen chlorite	HClO _{2(aq)}	chlorous acid
Suffix –at	$e \rightarrow \text{drop "hydrogen" and ch}$	ange – <u>ate</u> to – <u>ic acid</u> .	

Suffix $-ite \rightarrow drop$ "hydrogen" and change -ite to -ous acid.

