

Isotopes are atoms of a particular element that have the same number of protons but different numbers of neutrons.

Isotopes of Potassium

	Potassium-39	Potassium-40	Potassium-41
# of protons	19	19	19
# of neutrons	20	21	22
# of total electrons In a neutral atom	19	19	19

Why Are Atomic Masses on the Periodic Table of Elements Often Decimals?

The atomic mass cited in the Periodic Table of Elements is actually an *average* the element's isotopes' masses based on their relative abundance.

For potassium, 93.3% is $^{39}_{19}K$, 6.73% is $^{41}_{19}K$, and 0.01% is $^{40}_{19}K$.

Radioactivity and Radiation

<u>Radioactivity</u> is the release of high-energy particles and rays of energy from a substance as a result of changes in the nuclei of its atoms.

<u>Radiation</u> refers to high-energy rays and particles emitted by radioactive sources.

Radioactive Decay

<u>Radioactive decay</u> is the process in which unstable nuclei lose energy by emitting radiation.

Radioactive decay typically continues in a particular atom until a stable, non-radioactive isotope form is obtained.

<u>Radioisotopes</u> are isotopes that can undergo radioactive decay.

Three types of radioactive decay are,

- 1. Alpha decay, α
- 2. Beta decay, β
- 3. Gamma radiation, γ

Alpha Decay

Alpha decay is the emission of an <u>alpha particle</u>, ${}_{2}^{4}\alpha$ or ${}_{2}^{4}He$, from the nucleus of an atom.

with great energy.

Note that the mass of an atom undergoing beta decay remains the same.

Some Isotopes Can Undergo Numerous Decays Until a Stable Form Is Obtained

Relative Penetrating Power of Alpha Radiation, Beta Radiation, and Gamma Radiation

Summary <u>Isotopes</u> of an element have varying quantities of neutrons **Radioisotopes** undergo various forms of radioactive decay such as Alpha, Beta, and Gamma.

Property	Alpha Radiation	Beta Radiation	Gamma Radiation
Symbol	$\frac{4}{2}\alpha$ or $\frac{4}{2}He$	${}^{0}_{-1}\beta \text{ or } {}^{0}_{-1}e$	${}^0_0\gamma$
Composition	Alpha particle	Beta-particle	High-energy electromagnetic radiation
Description of the radiation	Helium nucleus	electron	High energy rays
Charge of the emission	2+	1-	0
Relative Penetrating Power	Blocked by paper	Blocked by metal foil or concrete	Partly blocked or completely blocked by lead