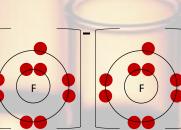
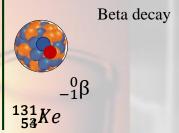


Chemical Reactions Versus Nuclear Reactions

Chemical Reactions

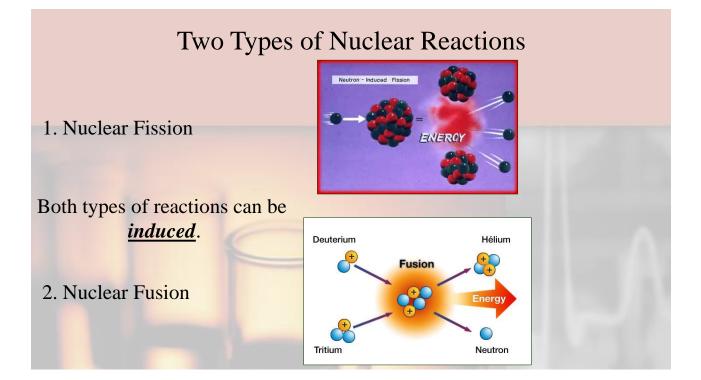
- Relatively small amount of energy involved
- Rearrangement of valence electrons

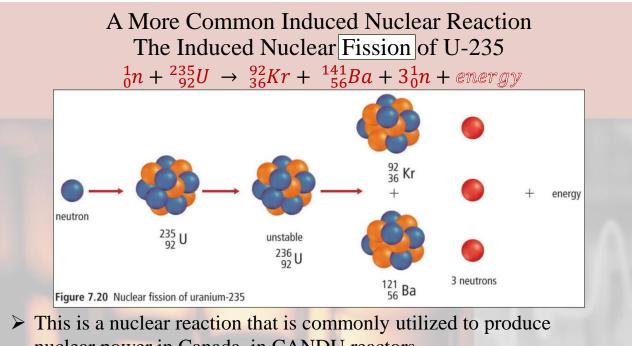

2 +


Be

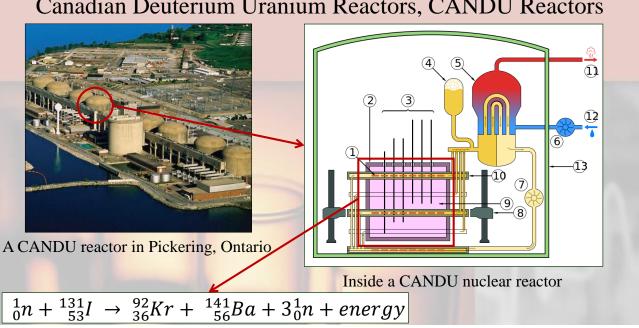
• Atomic nuclei are unchanged

Nuclear Reactions


- Large amounts of energy involved
- Nuclei of isotopes are changed often producing different elements
- Electrons can be produced in the nucleus



Review of Symbols for Subatomic Particles in Standard Atomic Notation


ProtonH nucleus $\frac{1}{1}p$ or $\frac{1}{1}H$ Neutron- $\frac{1}{0}n$ ElectronBeta particle $\frac{0}{-1}e$ or $\frac{0}{-1}\beta$ Alpha particleHe nucleus $\frac{4}{2}\alpha$ or $\frac{4}{2}He$	Particle	Also Known As	Symbols
Electron Beta particle $-{}^{0}_{-1}e \text{ or } -{}^{0}_{-1}\beta$	Proton	H nucleus	${}^{1}_{1}p \ or {}^{1}_{1}H$
	Neutron	-	1_0n
Alpha particle He nucleus $\frac{4}{2}\alpha$ or $\frac{4}{2}He$	Electron	Beta particle	$_{-1}^{0}e \ or \ _{-1}^{0}\beta$
	Alpha particle	He nucleus	${}^4_2\alpha$ or 4_2He
		10	

Induced Nuclear Reactions Naturally occurring nuclear reactions are generally caused by unstable nuclei. α , β , and γ decay Scientists can also cause nuclei of isotopes to become unstable, Induced nuclear ¹⁷₈0 ⁴₂He $^{14}_{7}N$ Η fusion I bombarding hydrogen target oxygen alpha particle nitrogen atom atom atom Figure 7.19 When a nitrogen-14 nucleus is bombarded by an alpha particle, a fluorine-18 nucleus is produced, which decays into oxygen-17 and a proton.

nuclear power in Canada, in CANDU reactors.

Canadian Deuterium Uranium Reactors, CANDU Reactors

CANDU Reactors are great, But

- Nuclear materials, U-235, are only useable for approximately 15 years.
- Eventyally, the nuclear waste left over is stored in above-ground storage tanks.
- While the radioactivity of used fuel bundles • decreases significantly with time, the bundles remain hazardous for many thousands of years and must be isolated from the natural living environment

Nuclear Fusion

Fusion is the process in which two low mass nuclei join together to make a more massive nucleus.

Fusion occurs naturally in the extremely high-temperature and high-pressure cores of stars like the Sun.

 ${}^{3}_{1}H + {}^{2}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n + energy$

Key Points for Nuclear Reaction Equations

 ${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{152}_{60}Nd + {}^{80}_{32}Ge + 4 {}^{1}_{0}n$

- 1. The total masses before and after the reaction are the same.
 - Law of conservation of mass
 - ➤ In the reaction above,
 - \blacktriangleright mass number on the left = 1 + 235 = 236
 - > mass number on the right = $152 + 80 + (4 \times 1) = 236$
- 2. The net charge before and after the reaction is the same.
 - Law of conservation of charge
 - ➤ In the reaction above,
 - \blacktriangleright charge on the left = 0 + 92 = 92
 - → charge on the right = $60 + 32 + (4 \times 0) = 92$

Provincial Exam Question

Question

Which reaction occurs when an alpha particle is captured by a beryllium-9 nucleus? A. ${}_{4}^{9}Be + {}_{2}^{4}He \rightarrow {}_{6}^{12}C + {}_{0}^{1}n$

B. ${}^{9}_{4}Be + {}^{4}_{2}He \rightarrow {}^{6}_{12}C + {}^{0}_{1}n$ C. ${}^{9}_{4}Be + {}^{4}_{2}He \rightarrow {}^{6}_{12}Mg + {}^{0}_{1}n$

D. ${}^{9}_{4}Be + {}^{4}_{2}He \rightarrow {}^{12}_{6}Mg + {}^{1}_{0}n$

Answer

The total mass on the left is 9 + 4 = 13.

Options A and D have a total mass of 13 on the right, but only A shows the correct element for a nucleus with 6 protons, therefore the answer is A. ${}_{4}^{9}Be + {}_{2}^{4}He \rightarrow {}_{6}^{12}C + {}_{0}^{1}n$

Provincial Exam Question

Question What type of reaction is occurring?

```
{}^{209}_{83}Bi + {}^{64}_{28}Ni \rightarrow {}^{272}_{111}Rg + {}^{1}_{0}n
```

- A. fusion
- B. fission
- C. beta decay
- D. alpha decay

Answer

Bi and Ni have joined to form a larger isotope, Rg. Even though a neutron is expelled, two smaller isotopes joining together to form a larger isotope is fusion, therefore the answer is A.

Provincial Exam Question

Question

Which of the following subatomic particles completes the nuclear reaction below? $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{94}_{38}Sr + ^{140}_{54}Xe + _$

A. one proton

B. two protons

C. one neutron

D. two neutrons

Answer

The total mass on the left is 235 + 1 = 236, therefore the mass on the right must also be 236. The mass of whatever is missing must be 236 - 94 - 140 = 2. The total charge on the left is 92, therefore the total charge on the right must also be 92. The mass of whatever is missing must be 92 - 38 - 54 = 0. The option that has a mass of 2 and a charge of 0 is D.

Summary

Induced nuclear reactions can be caused by bombarding nuclei with high-energy particles causing them to become unstable.

Types of nuclear reactions

- fission, utilized in CANDU reactors, nuclear bombs, and other applications
- fusion, occurring in stars and, maybe one day, on earth to produce energy