The Language of Motion PowerPoint 8.1

How would you describe the motion in each of the images below?

Motion of the something floating through space

Motion of the pucks

Motion of the cars

Size does matter, but so does direction

The size of a measurement or the amount (number).
Quantities that describe magnitude but do not include direction are called scalar quantities or scalars.

Ex. I live 7 km from here.
Quantities that describe magnitude and also include direction are called vector quantities or vectors.

Ex. I live 7 km east from here.

Often written as 7 km [E].

Time

Time, t, is classified as a scalar quantity.

Time interval, Δt, is also a scalar quantity. Change in time $=\Delta t=t_{f}-t_{i}$

The skateboarder passes the firehydrant at $\mathrm{t}=2 \mathrm{~s}$.
The skateboarder travels 5 m in the time interval, $\Delta \mathrm{t}=(5 \mathrm{~s})-(2 \mathrm{~s})=3 \mathrm{~s}$.

Final time

Distance, Position, and Displacement - not the same thing

Distance, d, describes the length of a path between two points.

$$
d=9 m
$$

Position, \vec{d}, describes a specific point relative to a point of reference.

$$
\vec{d}=17 \mathrm{~m} \text { to the right }
$$

Displacement, $\Delta \vec{d}$, is the straight-line distance and direction from one point to another, and it describes a change in position.

$$
\Delta \vec{d}=d_{f}-d_{i}=(-4 m)-(17 m)=-21 m
$$

Things to Remember

$>$ Careful with + and - signs
Generally, + is Right, North, East, or Up R.U.N.E.
Generally, - is left, south, west, or down
Ex. If something moves from 9 m east to 8 m west, then the displacement is,

$$
\Delta \vec{d}=\vec{d}_{f}-\vec{d}_{i}=(-8 m)-(9 m)=1 m
$$

$>$ Remember the appropriate units For d, \vec{d}, and $\Delta \vec{d}$ units are in m or km . For t and Δt units are in s or h .

The International System of units, Le système International d'unités, are the series of units most commonly utilized by the international scientific community.

Summary of Scalars and Vectors for Motion in 8.1

| Measurement | Symbol | Scalar or
 Vector | SI Unit | What It Measures |
| :---: | :---: | :---: | :---: | :--- | :--- |
| distance | d | scalar | m, km | Length of path between two
 points |
| position | \vec{d} | vector | m, km | A specific point relative to a
 point of origin |
| displacement | $\Delta \vec{d}$ | vector | m, km | The straight-line distance and
 direction from one point to
 another, final position minus the
 initial position |
| time | t | scalar | s, h | When an event occurs |
| time interval | Δt | scalar | s, h | Duration of an event |

Uniform Motion, Motion Diagrams, and Position-Time Graphs
Objects in uniform motion travel equal displacement in equal time intervals.

Figure 8.11 The uniform motion of the ball is shown as a straight line on a position-time graph.
A position-time graph shows an object's position during corresponding time intervals
allows analysis of motion

Slope of Position-Time Graphs

A positive slope indicates that position from the origin is increasing or that the object is travelling to the Right, Up, North, or East, RUNE.

A zero slope indicates that the object is stationary.
This is also type of uniform motion.

A negative slope indicates that position from the origin is decreasing or that the object is travelling south, west, down, or to the left.

A More Complicated Position-Time Graph

Provincial Exam Question

Question

In which of the following situations is the displacement the greatest?
A. $\uparrow \underset{\sim}{\text { N }}$
B. $\stackrel{2 \mathrm{~m}}{\stackrel{\Xi}{\sim}}$
C.

D.

Answer
B.

For A, displacement is exactly 2 m .
For B , displacement is clearly $>2 \mathrm{~m}$.
For C , the displacement is exactly 2 m .
For D , the displacement is 0 m .

Question

Provincial Exam Question

Which of the following units is associated with the $\Delta \mathrm{d}$ symbol in motion formulae?
A. s
B. m
C. m / s
D. $\mathrm{m} / \mathrm{s}^{2}$

Answer
B.

The unit s is for time.
The unit m is for change in distance.
The unit m / s is for speed or velocity.
The units $\mathrm{m} / \mathrm{s}^{2}$ is for acceleration.

Summary

A scalar quantity has a magnitude, but no direction.
A vector quantity has a magnitude and a direction.

Scallar quantities

- Time, t
- Time interval, Δt
- Distance, d

Vector quantitities

- Position, \vec{d}
- Displacement, $\Delta \vec{d}$ $\rightarrow \Delta \vec{d}=\vec{d}_{f}-\vec{d}_{i}$

Position=Time Graph

Distance, Position, and Displacement
No direction Scalar \longrightarrow Distance, d
I drove my vehicle 10 km .
I drove my vehicle 10 km [E].

$$
\Delta \vec{d}=0 \mathrm{~m} \quad \text { This arrow indicates a vector. }
$$

Question

Provincial Exam Question

Which of the following subatomic particles completes the nuclear reaction below?

$$
{ }_{92}^{235} U+{ }_{0}^{1} n \rightarrow{ }_{38}^{94} \mathrm{Sr}+{ }_{54}^{140} \mathrm{Xe}+
$$

\qquad
A. one proton
B. two protons
C. one neutron
D. two neutrons

Answer
The total mass on the left is $235+1=236$, therefore the mass on the right must also be 236. The mass of whatever is missing must be $236-94-140=2$.
The total charge on the left is 92 , therefore the total charge on the right must also be 92 . The mass of whatever is missing must be $92-38-54=0$.
The option that has a mass of 2 and a charge of 0 is D .

