Chimie 11

9.3, La polarité

La polarité (Questions de Hebden Chemistry 11 - A Workbook for Students pages 199 - 208, #9 -27).

- 9. Quelles molécules/liaisons sont polaires?
 - a) H-H
 - b) H-O _____
 - c) O-Cl
 - d) Cl-Cl
- 10. Lesquelles des molécules suivantes sont polaires et lesquelles sont non-polaires?

(e)
$$H$$
 (f) H (g) $H-C \equiv C-H$ (h) $O = C-H$ $O = C-H$

- 11. HCl et F₂ chacun 18 électrons. Quelle substance devrait avoir le plus haut point d'ébullition? Pourquoi?
- 12. Même si CF₄ a 42 électrons et CHF₃ a seulement 34 électrons, le point d'ébullition de CF₄ est -128 °C et celui de CHF₃ est -83 °C. Pourquoi le CHF₃ a-t-il un plus haut point d'ébullition?

13. Le point de fusion de quelques substances est donné – chacune est polaire

 $NH_3 = -78 \, ^{\circ}C$

 $PH_3 = -133 \, {}^{\circ}\text{C}$

 $AsH_3 = -116$ °C

 $SbH_3 = -88 \, ^{\circ}C$

- a) Pourquoi les points de fusion de SbH₃ AsH₃, et PH₃ diminuent graduellement?
- b) Pourquoi le point de fusion de NH₃ augmente dramatiquement comparé à PH₃?
- 14. Lesquelles des substances suivantes devraient produire des liaisons hydrogène?
 - a) CH₄
 - b) HCl
 - c) H₂O
 - d) H₂S
 - e) CH₃-NH₂
 - f) CH₃-SH
 - g) CH₃-CH₂-OH
 - h) HF _____
- 15. Suggérez une raison pour laquelle le propane liquide a une viscosité faible, mais le glycérol liquide a une haute viscosité.

16. Lequel devrait avoir un plus haut point d'ébullition?

a) CH₃-CH₂-SH ou CH₃-CH₂-OH

b) H₂O ou H₂S

c) CH₃NH₂ ou CH₃CH₃

Voici quelques solvants communs			
<u>Nom</u>	<u>Structure</u>		
eau	H ^O H		
méthanol	H H—C—OH H		
éthanol	H H H H-C-C-O H H		
benzène	H-C C-H		
éthoxyéthane	H ₂ C CH ₂ H ₃ C CH ₃		
acétone	H ₃ C CH ₃		
acide acétique	H—C—C—H		

chloroforme	H-C-CI
tetrachlorure de carbone	CI — CI
heptane	H - C - H - C
ammoniac liquide	н Н н

Remplissez le tableau suivant

Solvant	Polaire/non-polaire
eau	
méthanol	
éthanol	
benzène	
acétone	
acide acétique	
chloroforme	
tetrachlorure de carbone	
heptane	
ammoniac liquide	

18.	Le brome, Br ₂ , est soluble dans l'hexane (C ₆ H ₁₂ , CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃), mais seulement peu soluble dans l'eau. Pourquoi est-ce que c'est le cas?
19.	Que serait un avantage d'un solvant en forme d'une longue chaine de carbone qui finit avec un groupe ionique, Ex. – CH ₃ CH ₂ COO Na ⁺ ?
20.	Pourquoi un solvant non-polaire ne dissout pas un composé ionique?
21.	Pourquoi l'eau, un solvant polaire, est capable de dissoudre de petites quantités du liquide non-polaire le pentane, C_5H_{12} ?
22.	On a de l'eau, du méthanol, et de l'éthanol disponibles comme solvants. Lequel utiliseriez-vous pour dissoudre la plus grande quantité des solutés suivants? a) KCl
	b) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br
	c) Octane, CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
23.	Citez la force intermoléculaire (force dipôlaire, liaison d'hydrogène, ou forces de London) ou la force intramoléculaire (liaison ionique ou liaison covalente) la plus importante entre les particules suivantes. a) 2 molécules de O ₂ dans du O _{2(s)}
	b) 2 atomes de Xe dans du Xe _(s)

c)	2 molécules de BrCl dans du BrCl _(l)		
d)	2 molécules du CH ₃ CH ₂ NH ₂ dans du CH ₃ C	CH ₂ NH _{2(l)}	
e)	Un atome de C et un atome de Cl dans du C	CCl ₄	
f)	2 molécules de BF ₃ dans du BF _{3(l)}		
g)	2 molécules de CH ₃ F dans du CH ₃ F _(l)		
h)	2 molécules de CCl ₄ dans dud CCl _{4(l)}		
i)	2 molécules de NOCl dans du NOCl _(s)		
j)	F et Cs dans du CsF _(s)		
k)	2 molécules de NH ₂ OH dans du NH ₂ OH _(l)		
1)	Des atomes de He et Kr		
	equel devrait fondre à la température la plus d He ou Xe	élevée?	
b)	HBr ou Kr		
c)	CH ₃ -CH ₃ ou HO-CH ₂ -CH ₂ -OH		
d)	F ₂ ou Br ₂		
e)	CH4 ou CCl4		
f)	H ₂ O ou H ₂ Te		
g)	CH ₄ ou CH ₃ F		
h)	HI ou HCl		

25. L'o	octane devrait être	un bon solvant pour les	quels des solutés suivants?
a)	$I_{2(s)}$		-
b)	NaCl _(s)		-
c)	$H_2O_{(1)}$		-
d)	$C_{10}H_{8(s)}$		_

26. Vous devez préparer plusieurs solutions et chacun doit contenir au moins un peu d'un des solutés suivants – I₂, NaNO₃, CS₂, formaldéhyde (CH₂=O, polaire), S₈ (un anneau d'atomes de soufre). Les solvants suivants sont disponibles – eau, acétone, éthanol, méthanol, heptane, et tétrachlorure de carbone. Quel soluté devrait être dissout dans quel solvant? plusieurs réponses possibles

27. On a trois béchers étiquetées A, B, et C, et trois fioles étiquetés X, Y et Z. Les béchers contiennent, dans aucun ordre, du naphtalène (non-polaire), acide benzoïque (polaire), du chlorure de sodium (ionique). La fiole X contient de l'eau, et les fioles Y et Z contiennent des liquides différents et inconnus. Le tableau suivant indique le résultat de mélanger les solutés (A, B, et C) dans chacun des solvants (X, Y, et Z).

	Poudre A	Poudre B	Poudre C
Liquide X	soluble	peu soluble	insoluble
Liquide Y	insoluble	assez soluble	soluble
Liquide Z	insoluble	soluble	soluble

Identifiez chacun des poudre A, B, et C et classifiez chacun des liquides X, Y, et Z comme étant polaire ou non-polaire.